
## ALUMINUM CLADDING •UNIVERSAL 4+4





## Table of Contents

| AT A GLANCE             | (   | <b>D1</b>  |
|-------------------------|-----|------------|
| COMPANY OVERVIEW        |     | D2         |
| COLOR GUIDE             |     | 03         |
| PRODUCT OVERVIEW        | • ( | <b>)</b> 4 |
| PRODUCT DETAILS & SPECS | • ( | 05-07      |
| TECHNICAL DATA & CERTS  | • ( | 08-21      |



## WELCOME!





### GTO ALUMINUM Interior & Exterior Wall Cladding

GTO Aluminum is the leading innovator in Aluminum Cladding installation systems, profiles, and technology for both Interior & Exterior design.

A pioneer for both residential and commercial structures. Unlike anything else in the construction and design markets today! Slide-on, tongue and groove installation, fully enclosed with no gaps. Perfect for applications requiring a more waterproof solution.

One portion of the universal profile would be drilled in with screws; as the next profile slides in on top and cover the screws of the one beneath it. This provides a very sleek, sealed, modern, and clean finish.

## A SUPERIOR PRODUCT THAT GIVES CUSTOMER MORE OPTIONS

Using Aluminum is a better solution for an environmentally sustainable future. It does not rust or swell, its impervious to termites, its fire resistant, therefore great to cover the fireplace or BBQ walls for example, it also requires ZERO maintenance and can handle every climate type. Aluminum is 100% recyclable; that means Aluminum is a forever product. It is so long lasting that 75% of all aluminum ever created is still in use today! Remarkable.



## **COLOR GUIDE**



Rust

Marble

Midnight Oak Black Wood

Onyx Timber

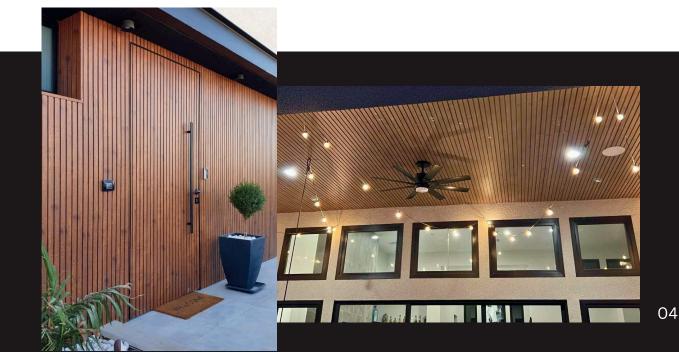
03

## UNIVERSAL 4+4 PRODUCT OVERVIEW

### Description

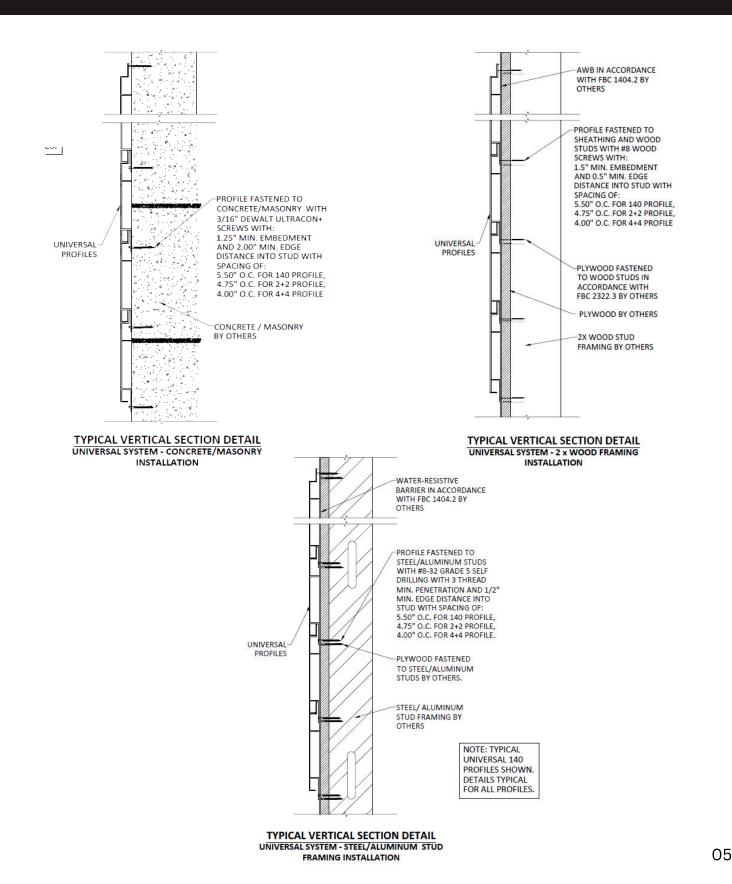
The Universal 4+4 is is ideal for both interior and exterior cladding, measuring 4.72"W x 0.70"H x 19'L with a 0.047" thickness.

### **Ideal Applications:**

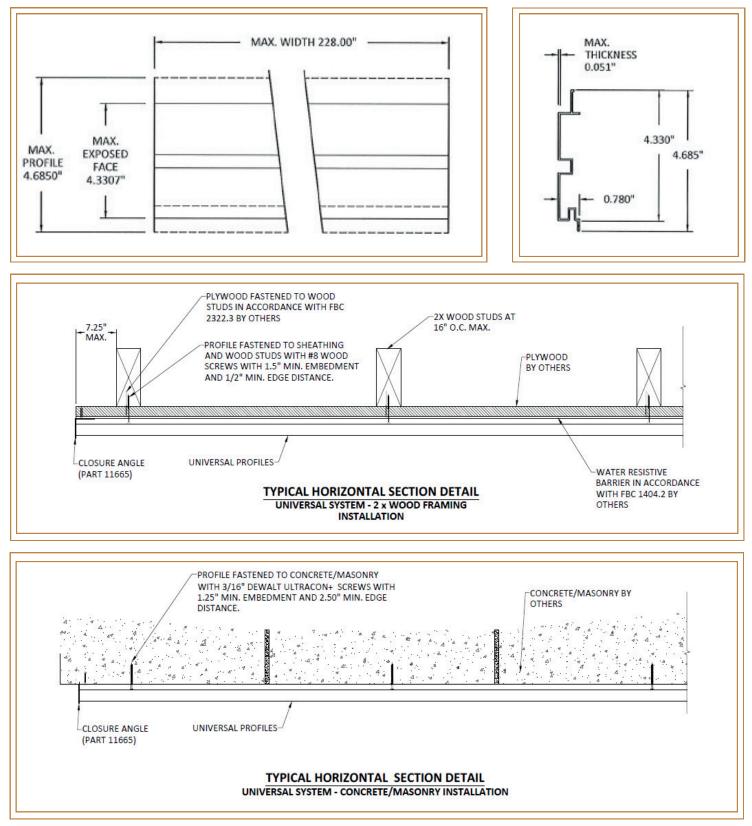

This profile emulates the same width as the Click 40 profiles, but is fully enclosed and works better for exterior cladding, perfect for backyard walls and doors. It can also be used in living rooms or offices that require a "warmer" look.

### **Key Features**

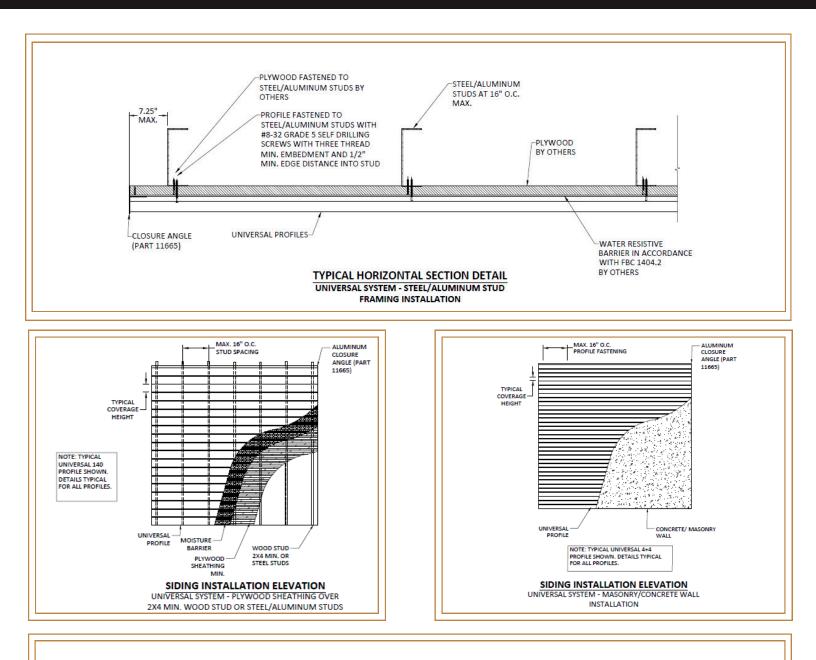
- Seamless installation with hidden fasteners.
- Available in a range of wood tones and custom colors.
- Engineered for durability in diverse climates.


## Standard Color Options






## **K**


## PRODUCT DETAILS & SPECIFICATIONS



# PRODUCT DETAILS & SPECIFICATIONS



## **PRODUCT DETAILS & SPECIFICATIONS**



### INSTALLATION NOTES

- 1. ONE INSTALLATION FASTENERS IS REQUIRED AT EACH FASTENER LOCATION SHOWN.
- INSTALL INDIVIDUAL INSTALLATION ANCHORS WITHIN A TOLERANCE OF ±1/2 INCH THE DEPICTED LOCATION & SPACING IN THE ANCHOR LAYOUT DETAILS (I.E., WITHOUT CONSIDERATION OF TOLERANCES). TOLERANCES ARE NOT CUMULATIVE FROM ONE INSTALLATION ANCHOR TO THE NEXT. 2.
- MINIMUM EMBEDMENT AND EDGE DISTANCE EXCLUDE WALL FINISHES, INCLUDING BUT NOT LIMITED TO 3. STUCCO, FOAM, BRICK VENEER, AND SIDING
- ANCHORS SHALL BE AS LISTED AND SPACED AS SHOWN ON DETAILS. EMBEDMENT TO BASE MATERIAL SHALL BE 4. BEYOND WALL DRESSING.
- INSTALLATION FASTENERS AND ASSOCIATED HARDWARE MUST BE MADE OF CORROSION RESISTANT MATERIAL OR HAVE A CORROSION RESISTANT COATING. 5.
- 6. INSTALLATION FASTENERS SHALL BE INSTALLED IN ACCORDANCE WITH ANCHOR MANUFACTURER'S INSTALLATION INSTRUCTIONS, AND FASTENERS SHALL NOT BE USED IN SUBSTRATES WITH STRENGTHS LESS THAN THE MINIMUM STRENGTH SPECIFIED BY THE ANCHOR MANUFACTURER.
- 7. INSTALLATION FASTENERS CAPACITIES FOR PRODUCTS HEREIN ARE BASED ON SUBSTRATE MATERIALS WITH HISTADATION TO PRODUCT STATES TO A PRODUCT STREAM AND THE POLLOWING PROPERTIES:
   2.2 WOOD FRAMING - MINIMUM SPECIFIC GRAVITY OF 0.55.
   CONCRETE - fc= 3000 PSI
   MASONRY - CMU PER ASTM

  - C90 MIN 2000 PSI
  - METAL 18 GAUGE STEEL, MIN. Fy = 33KSI ALUMINUM 1/8" MIN. 6063-T5

## Ť

## TECHNICAL DATA & CERTIFICATIONS

## PART 1: GENERAL I.

#### 1.1 RELATED SECTIONS

- **05 40 00** Cold-Formed Metal Framing: Metal framing used to support aluminum cladding.
- 07 50 00 Membrane Roofing: Used in conjunction with roof-related aluminum cladding.
- 07 60 00 Flashing and Sheet Metal: Components used with aluminum siding.
- 07 46 16 Aluminum Siding: Specifics for aluminum siding applications.
- **05 50 00** Metal Fabrications: Involves metal workings that are necessary for structural supports and detailed metalwork integral to aluminum cladding installations.

#### 1.2 **REFERENCES**

#### • Miami-Dade County NOA Approval (NOA No. 24-0408.05)

Meets Florida Building Code and High-Velocity Hurricane Zone standards. Large and small missile impact resistant, ensuring durability in extreme weather.

#### • Fire Safety Compliance

ASTM E84-24 tested for surface burning characteristics.

#### • Class A Fire Rating:

- Flame Spread Index (FSI): 0 (Highest fire resistance rating).
- □ Smoke Developed Index (SDI): 35 (Universal 4+4) & 30 (Click 180).

#### ISO Standards:

- □ ISO 9001:2015 Quality Management System.
- 🔲 ISO 14001:2015 Environmental Management System.
- ISO 45001:2018 Occupational Health & Safety Management System.
- 📋 ISO 50001:2018 Energy Management System.





## PART 1: GENERAL II.

### 1.2 **REFERENCES**

European Standards / EU Standards:
 EN 515, EN 573-3, EN 755-2, EN 755-9, EN 12020-2, EN 15088:2005.

### • Testing and Performance Certifications:

- Resistance to humid atmospheres containing Sulphur dioxide (ISO 22479).
- Acetic acid salt spray resistance (ISO 9227).
- Accelerated weathering test (Solar box, ISO 16474-2).
- Natural weathering test (Florida exposure, ISO 2810).
- Filiform corrosion test (ISO 4623-2).
- Q-SUN XE-3 HS Accelerated Weathering Test by SUBLITEX.
- AAMA 2605 highest standard for powder-coated aluminum, ensuring durability and color retention in extreme environments.

### 1.3 SUBMITTALS

- Product data: Submit manufacturer's product literature, specifications, and data sheets.
- □ Samples: Submit duplicate samples of cladding material, of color and profile specified.
- Shop Drawings: Indicate dimensions, profiles, attachment methods, schedule of wall elevations, trim and closure pieces, soffits, fascia, and related work.
- Certifications: Submit proof of compliance with specified tests and standards.

### 1.4 WARRANTY

Provide a 20-year limited warranty from the date of Substantial Completion covering manufacturing defects such as warping, corrosion, cracking, chalk resistance, and color retention. Warranty applies only to the original owner and is not transferable.



## **PART 2: PRODUCTS**

### 2.1 ALUMINUM CLADDING AND COMPONENTS

- European Standards / EU Standards:
  - □ Profile: Universal 4+4 4.72"W x 0.70"H x 19'L | 0.047" thickness
  - Material: 6063 Alloy, T5, powder-coated, 18 gauge.
  - Finish: Powder-coated in standard and custom colors.
  - Colors: Espresso, Oak, Pine, Gray, Charcoal Black, Gloss Black; custom colors available for large orders.

### 2.2 ACCESSORIES

- Aluminum Furring Strips spaced every 24"-36"
  - ✓ Ventilation: The air gap created by the furring strips acts as a rainscreen, allowing moisture behind the cladding to dry and dissipating heat to reduce temperature buildup on the panels.
  - ⊘ Drainage: Any excess water entering the system can drain downward through the gap, preventing water accumulation.
  - ⊘ Thermal Isolation: The furring strips minimize direct heat transfer from the wall to the cladding, further limiting expansion.
  - Flexibility: The furring strips allow the cladding system to move slightly as a single unit, accommodating minor thermal expansion without causing stress points or buckling. By spacing the furring strips every 24inches, the panels are effectively divided into smaller sections. Each section undergoes less expansion compared to a single long, continuous panel, which helps prevent buckling.
  - ⊗ Recommended Tools: Use a 96 teeth aluminum blade for cuts.

## PART 3: EXECUTION

#### 3.1 INSTALLATION

Install according to manufacturer's instructions and approved shop drawings. Maintain joints true to line, tight-fitting, and with a seamless appearance.

### 3.2 CLEANING AND MAINTENANCE

Conduct freshwater cleaning and general maintenance quarterly. Use a soft cloth or brush with mild soap and warm water for routine cleaning. Avoid harsh chemical cleaners and maintain a log of all maintenance activities.





## **ICC-ES TEST REPORT**



#### 1.6 Witnessing

No representative of GTO Aluminum USA witnessed the testing reported herein.

#### 1.7 Conditions of Testing

Unless otherwise indicated, all testing reported herein was conducted in a laboratory set to maintain temperature in the range of 65-80°F and humidity in the range of 45-60% RH. All test specimen materials were stored in the laboratory conditioning room of  $73.4 \pm 5$ °F and at a relative humidity of 50  $\pm$  5% environment for no less than 24 hours prior to testing. The test specimens were conditioned for **16** days and obtained steady state.

#### 2.0 ReferencedStandards

ASTM E84-24 Standard Test Method for Surface Burning Characteristics of Building Materials.

#### 3.0 Summary of Results

Flame Spread Index – 0

Smoke Developed Index – 35

#### 3.1 General

This fire-test-response standard for the comparative surface burning behavior of building materials is applicable to exposed surfaces such as walls and ceilings. This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.

#### 3.2 Test Specimens

The samples submitted by the manufacturer was identified as Universal 4+4 Cladding and was supplied in the form of (15) 0.047-in x 4.72-in x 288-in. They were received without damage.

www.ICC-ES.org

GAUA101124-43(A) Page 4 of 12

ČE

# TECHNICAL DATA & CERTIFICATIONS

## **ICC-ES TEST REPORT**



### 3.3 Test Setup and Procedure

The product(s) were setup and evaluated in accordance with ASTM E84-24.

| Substrate Used:        | N/A                              |
|------------------------|----------------------------------|
| Mounting Method:       | Standard                         |
| Support Used:          | Rods                             |
| Side Exposed:          | Flat Side                        |
| Adhesive Used &        | N/A                              |
| Coverage Rate          |                                  |
| (if Applicable):       |                                  |
| Cement Board Used      | Yes                              |
| to Cover Sample        |                                  |
| (Y/N):                 |                                  |
| Sample Continuous      | Sectioned                        |
| or Sectioned:          |                                  |
| No. & Size             | (15) 0.047-in x 4.72-in x 288-in |
| of                     |                                  |
| Sections:              |                                  |
| Lab Ambient Temp (°F): | 71                               |
| Lab Ambient RH (%):    | 27                               |
| DateTested:            | 1/24/2025                        |

# TECHNICAL DATA & CERTIFICATIONS



| TEST DATA                            |        |
|--------------------------------------|--------|
| Time to Ignition (mm/ss):            | 01:52  |
|                                      |        |
| Maximum Flame Spread (ft):           | 0.000  |
| Time to Max Flame Spread<br>(mm/ss): | 00:00  |
| Movimum Tomporoturo (°E);            |        |
| Maximum Temperature (°F):            | 499    |
| Time to Max Temperature<br>(mm/ss):  | 09:28  |
|                                      |        |
| Total Fuel Burned (cubic feet):      | 45.007 |
|                                      |        |
| Flame Spread*Time Area<br>(ft*min):  | 0.000  |
| Smoke Area (%A*min):                 | 22.693 |
|                                      |        |
| Unrounded FSI:                       | 0.000  |
| Unrounded SDI:                       | 33.573 |

## TEST OBSERVATIONS

| 01:35 | Observed charring and |
|-------|-----------------------|
|       | discoloration         |
| 07:00 | Observed charring on  |
|       | surface increasing    |

|            | POST-TEST OBSERVATIONS             |
|------------|------------------------------------|
| 0 – 8 ft   | Section was charred and discolored |
| 8 – 16 ft  | Section was slightly discolored    |
| 16 – 24 ft | Section was untouched              |

### Analysis on Classification Criteria

Based on Flame Spread Index and Smoke Developed Index when tested in accordance with ASTM E84 or UL 723. Three classes of interior finish are specified by the International Building Code (IBC) that describes a set of classification criteria required for interior wall and ceiling finish materials. The classification criteria for all three model codes is the same: ASTM E84 and UL 723 do not include classification criteria for the results obtained from testing.

| Class | Flame Spread Index | Smoke Developed Index |
|-------|--------------------|-----------------------|
| Α     | 0-25               | 0-450                 |
| В     | 26-75              | 0-450                 |
| С     | 76-200             | 0-450                 |

Document Control ID: FORM QA 4.3 Test Report 2024-05-10 GAUA101124-43(A) Page 6 of 12



## CERTIFICATIONS



**4.0 Closing Statement** This report contains only findings and results arrived at after employing the specific test procedures listed herein. It does not constitute a recommendation for, endorsement of, or certification of the product or material tested. Unless differently required, ICC-ES reports apply the "Simple Acceptance" rule, also called "Shared Risk approach", of ILAC-G8:09/2019, Guidelines on Decision Rules and Statements of Conformity. ICC-ES makes no warranty, expressed or implied, except that the test has been performed, and a report prepared, based upon the specimen specified by the client. Extrapolation of data, from the test data provided herein, to the batch or lot from which the specimens were obtained may not correlate and should be interpreted with extreme caution. ICC-ES assumes no responsibility for variations in quality, composition, appearance, performance, or other features of similar materials produced by the client, other persons, or under conditions over which ICC-ES has no control. ICC-ES has issued this report for the exclusive use of the client to whom it is addressed. Any use or duplication of this report shall not be made without their consent. This report shall only be reproduced in its entirety.

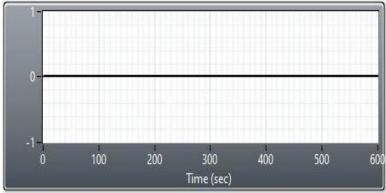
For ICC-ES, LLC:

Brent Mynar

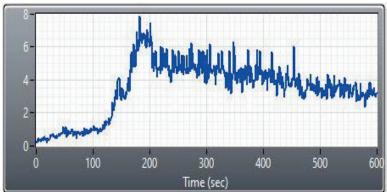
Tested by: Brent Mynar Ø Project Manager 01/27/2025

abriel Parra

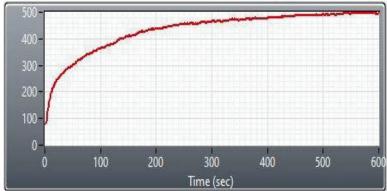
Reviewed by: Gabriel Parra Project Engineer 01/27/2025


Ĩ.

# TECHNICAL DATA & CERTIFICATIONS




**Appendix A - Data** 


### FLAME SPREAD



### SMOKE (%A)



### **TEMPERATURE**



Document Control ID: FORM QA 4.3 Test Report 2024-05-10

www.ICC-ES.org

GAUA101124-43(A) Page 8 of 12



| #8 Wood Screw i                      | into Mi          | xed Map    | ple-Southern Pine w/ 0.1457 in. of Gap Space.                         |
|--------------------------------------|------------------|------------|-----------------------------------------------------------------------|
| GTO Aluminum                         | - Unive          | ersal Alu  | uminum Siding & CLICK Profile Siding System                           |
| Calculations herein are performed    | in accor         | dance wi   | ith the National Design Specification for Wood Construction - 2018,   |
| Chapter 12.3 and Technical Report 12 | - Gener          | al Dowel   | Equations for Calculating Lateral Connection Values, published by the |
|                                      |                  | Ame        | erican Wood Council                                                   |
| Wood Screw Type =                    | #8               | Wood Scr   | ew                                                                    |
| Wood Screw Length =                  | 1.75             | in         |                                                                       |
| Wood Screw Embedment =               | 1.50             | in         |                                                                       |
| Wood Screw Thread Length =           | 1.17             | in         |                                                                       |
| D =                                  | 0.164            | in         | , Dowel Diameter                                                      |
| D <sub>m</sub> =                     | 0.131            | in         | , Dowel Diameter at max. stress in main member                        |
| D <sub>s</sub> =                     | 0.131            | in         | , Dowel Diameter at max. stress in side member                        |
| F <sub>b</sub> =                     | 90,000           | psi        | , Dowel bending strength                                              |
|                                      | W                | ood Scre   | w Withdrawal Calculations                                             |
| Substrate:                           | Mixed Ma         | ple-Southe | rn Pine                                                               |
| Tabulated withdrawal design value:   | W =              | 141        | lbs                                                                   |
| Penetration Factor:                  | Cp=              | 1.17       | in                                                                    |
| Duration Factor:                     | C <sub>D</sub> = | 1.60       |                                                                       |
|                                      |                  | Withdra    | awal Allowable (W') = 263.0 lbs                                       |
|                                      |                  |            |                                                                       |

|                         | Tension De                  | sign Value                                   |
|-------------------------|-----------------------------|----------------------------------------------|
| Concrete                | Anchor Calculations         | Masonry Anchor Calculations                  |
| Fastener type:          | 3/16" DeWalt UltraCon+      | Fastener type: 3/16" DeWalt UltraCon+        |
| Reference: 1            | Nanufacture Published Data  | Reference: Manufacture Published Data        |
| Substrate: 3            | 000 PSI Concrete or Greater | Substrate: Hollow Block CMU (Per ASTM C-90)  |
| Minimum embedment:      | 1.00 in                     | Minimum embedment: 1.25 in                   |
| Minimum Spacing:        | 3.00 in                     | Minimum Spacing: 1.50 in                     |
| Minimum edge distance:  | 2.50 in                     | Minimum edge distance: 2.00 in               |
| Allowable Design Value: | W'= 155 lbs / anchor        | Allowable Design Value: W'= 150 lbs / anchor |
| Minimum anchor capa     | city: 150 lbs / anchor      |                                              |

## TECHNICAL DATA & CERTIFICATIONS



Determine Screwed Connection Tensile Capacity: #8-32 Gr. 5 Self-Drilling Screw Limit states for screw connection in tension per 2020 Aluminum Design Manual, 1.5.4.2: Pull-Over Design Tension Strength and Allowable Tension Strength Shall be determined as follows: Φ= 0.5 (LRFD) Ω= 3 (ASD builing-type structure) #8-32Gr. 5 Self-Drilling Fastener Type: J.5.5.1: Pull-Out Thickness of member not in contact with head, 0.125 in. Le = Nominal diameter of the screw, D = 0.164 in. Threads per inch, N = 32 per inch Tensile yield of member not in contact with head, Fty2 = 21000 psi Tensile ultimate of member not in contact with head, Ftu2 = 27000 psi Thread stripping area of internal thread per thread, TSA (I) 0.01 in. Coefficient for design per 2015 ADM, Ks = 1.2 (Not applicable for Le > 0.125) 0.04 Thread stripping area of internal thread per unit engaged, in. Asn = Nominal pull out strength, For 0.060in. < Le < 0.125 in. Use This Value lbs Rn = 516.6 Not Applicable For 0.125 in. < Le < 0.25 in. Rn = 516.6 lbs Not Applicable For 0.25. < Le < .375 in. Rn = 78.3 lbs ØRn = 258.3 Design Values, Ibs  $Rn/\Omega =$ 172.2 Ibs 1.5.5.2: Pull-Over a) The nominal strength  $R_e$  for the limit state of pull-over for non-countersunk screws is:  $R_{s} = C_{pos}t_{1}F_{tal}(D_{us} - D_{k})$ (J.5-8) Coefficient for valley vs crown fastening Coov = 1

| chos-         | -                                       |                                                                                            |
|---------------|-----------------------------------------|--------------------------------------------------------------------------------------------|
| t1 =          | 0.0472                                  | in.                                                                                        |
| Ftu1 =        | 27000                                   | psi                                                                                        |
| Dws =         | 0.438                                   | in.                                                                                        |
| Dh =          | 0.1405                                  | in.                                                                                        |
| Rn =          | 379.134                                 | lbs                                                                                        |
| ØRn =         | 189.567                                 | Ibs                                                                                        |
| $Rn/\Omega =$ | 126.378                                 | Ibs                                                                                        |
|               | t1 =<br>Ftu1 =<br>Dws =<br>Dh =<br>Rn = | t1 = 0.0472<br>Ftu1 = 27000<br>Dws = 0.438<br>Dh = 0.1405<br>Rn = 379.134<br>ΦRn = 189.567 |



| $Pn/\Omega =$  | 560                                                                                                                                                                | lbs, per A                                                                                                                                                                                                                                                                                                                                                                       | AMA TIR A9-14                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| ΦPns =         | 418.64                                                                                                                                                             | lbs, Φ=                                                                                                                                                                                                                                                                                                                                                                          | <u>0.5</u>                                                                                                                       |
| $Pns/\Omega =$ | 279.094                                                                                                                                                            | lbs, Ω=                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| t1 =           | 0.0472                                                                                                                                                             | in.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |
| (Eq. E4.4.2    | -1)                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| 4.4.2          |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| 442            |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  | S INTERNAL                                                                                                                       |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| 1.4.1          | 1000                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| d -            | 0.164                                                                                                                                                              | in                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    | t.                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |
|                |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| or thickness   |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  | Hand I                                                                                                                           |
| (Eq. E4.4.1-1) |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  | Q                                                                                                                                |
| NS:            |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                |                                                                                                                                                                    | Figure 1:                                                                                                                                                                                                                                                                                                                                                                        | Typical Connection Detail                                                                                                        |
| 4.4.1          |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                | $(Eq. E4.4.1-1)$ $d =$ $t1 =$ $t2 =$ $Fu2 =$ $Pnot =$ $Pns/\Omega =$ $\Phi Pns =$ $c4.4.2$ $(Eq. E4.4.2)$ $t1 =$ $Fu1 =$ $d'w =$ $Pns/\Omega =$ $\Phi Pns =$ $D =$ | (Eq. E4.4.1-1)<br>or thickness<br>d = 0.164 $t1 = 0.051$ $t2 = 0.0478$ $Fu2 = 58000$ Pnot = 386.473<br><u>Pns/\Omega = 128.824</u><br><u><b>DPns = 193.236</b><br/>E4.4.2<br/>(Eq. E4.4.2-1)<br/>t1 = 0.0472 <math display="block">Fu1 = 27000</math> <math display="block">d'w = 0.438<br/><u>Pns/\Omega = 279.094</u><br/><u><b>DPns = 418.64</b><br/>D = 0.164</u></math></u> | $\begin{array}{r} \text{(Eq. E4.4.1-1)} \\ \hline \\ \text{or thickness} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ |

Ĩ

# TECHNICAL DATA & CERTIFICATIONS



## **Product Evaluation Report**

Manufacture: Andersen Windows & Doors

Product : GTO Aluminum - Universal Aluminum Siding System & CLICK Profile Siding System

|                               | Minimum                              |                             |                    | Minimum Concrete Compressive Strength fc = 2,500 psi fc = 4,000 psi fc = 4,000 psi |                |              |                |                 |                           |                         |              |                           |                |              |              |              |              |       |              |       |               |               |               |       |       |       |       |       |
|-------------------------------|--------------------------------------|-----------------------------|--------------------|------------------------------------------------------------------------------------|----------------|--------------|----------------|-----------------|---------------------------|-------------------------|--------------|---------------------------|----------------|--------------|--------------|--------------|--------------|-------|--------------|-------|---------------|---------------|---------------|-------|-------|-------|-------|-------|
| Nominal<br>Anchor<br>Diameter | Embed.<br>Depth                      | Minimum<br>Edge<br>Distance | Minimum<br>Spacing |                                                                                    | (17.3          | Mpa)         |                |                 | (20.7                     | Mpa)                    | Mpa)         |                           | (27.0          |              |              |              |              |       |              |       |               |               |               |       |       |       |       |       |
| d<br>in.                      | in.                                  | tn.<br>(mm)                 | in.<br>(mm)        | Uitin                                                                              | mate<br>Shear  | Tension      | wable<br>Shear | Ultin           | Ultimate<br>Tension Shear |                         | Shear        | Ultimate<br>Tension Shear |                | Tension      | shear        |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (mm)                                 |                             |                    | lbs.<br>(kN)                                                                       | lbs.<br>(kN)   | Ibs.<br>(kN) | lbs.<br>(kN)   | lbs.<br>(kN)    | lbs.<br>(kN)              | Tension<br>Ibs.<br>(kN) | lbs.<br>(kN) | lbs.<br>(kN)              | ibs.<br>(kN)   | lbs.<br>(kN) | ibs.<br>(kN) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4<br>(44)                        |                             | 1 (25)             | 1,080<br>(4.8)                                                                     | 305<br>(1.3)   | 270 (1.2)    | 75<br>(0.3)    | 1,145 (5.0)     | 325 (1.4)                 | 285 (1.3)               | 80<br>(0.4)  | 1,245                     | 325<br>(1.4)   | 310<br>(1.4) | 80<br>(0.4)  |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4<br>(44)                        | 1<br>(25)                   | 1-1/8<br>(29)      | 1,190                                                                              | 305<br>(1.3)   | 295          | 75<br>(0.3)    | 1,255           | 325<br>(1.4)              | 315<br>(1.4)            | 80<br>(0.4)  | 1,370                     | 325<br>(1.4)   | 340<br>(1.5) | 80<br>(0.4)  |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4<br>(44)                        |                             | 2-1/4              | 1,365                                                                              | 600<br>(2.6)   | 340<br>(1.5) | 150            | 1,440           | 635<br>(2.8)              | 360<br>(1.6)            | 160          | 1,570                     | 635<br>(2.8)   | 395<br>(1.7) | 160          |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1 (25)                               |                             | 3                  | 580<br>(2.6)                                                                       | 435 (1.9)      | 145          | 110            | 615<br>(2.7)    | 460 (2.0)                 | 155                     | 115          | 670<br>(2.9)              | 460            | 170          | 115          |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (25)<br>1-3/8<br>(35)                |                             | (76)               | 815<br>(3.6)                                                                       | 455 (2.0)      | 205          | 115<br>(0.5)   | 860             | 485 (2.1)                 | 215 (1.0)               | 120<br>(0.5) | 940                       | 485            | 235          | 120          |              |              |       |              |       |               |               |               |       |       |       |       |       |
| 3/16                          | (35)<br>1-3/4<br>(44)                |                             | 3-3/8              | 1,365                                                                              | 600            | 340          | 150            | 1,440           | 635                       | 360                     | 160          | 1,570                     | 635            | 395          | 160          |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4                                | 2-1/2<br>(64)               | (86)               | (6.0)                                                                              | (2.6)          | (1.5)        | (0.7)          | (6.3)           | (2.8)                     | (1.6)                   | (0.7)<br>315 | (6.9)                     | (2.8)          | (1.7)        | (0.7)<br>315 |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (44)                                 |                             | 0                  |                                                                                    | -              | /4           | (29)<br>2-1/4  | (6.4)<br>1,465  | (5.3)                     | (1.6)<br>365            | (1.3)        | (6.8)<br>1,550            | (5.6)<br>1,265 | (1.7)        | (1.4)<br>315 | (7.4)        | (5.6)        | (1.9) | (1.4)<br>315 |       |               |               |               |       |       |       |       |       |
|                               | (44)                                 |                             | (57)               | (6.4)<br>580                                                                       | (5.3)<br>640   | (1.6)<br>145 | (1.3)          | (6.8)<br>615    | (5.6)<br>680              | (1.7)<br>155            | (1.4)        | (7.4)<br>670              | (5.6)<br>680   | (1.9)        | (1.4) 170    |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (25)                                 |                             | 3<br>(76)          | (2.6)                                                                              | (2.8)          | (0.7)<br>305 | (0.7)          | (2.7)           | (3.0)                     | (0.7)<br>325            | (0.8)        | (2.9)                     | (3.0)          | (0.7)<br>350 | (0.8)        |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (35)                                 |                             |                    |                                                                                    | 3-3/8          | (5.4)        | (3.2)          | (1.4) 365       | (0.8)                     | (5.7)                   | (3.4)        | (1.4)                     | (0.9)          | (6.2)        | (3.4)        | (1.6)        | (0.9)<br>315 |       |              |       |               |               |               |       |       |       |       |       |
|                               | (44)                                 |                             |                    | (86)                                                                               | (6.4)          | (5.3)        | (1.6)          | (1.3)           | (6.8)                     | (5.6)                   | (1.7)        | (1.4)                     | (7.4)          | (5.6)        | (1.9)        | (1.4)        |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (44)                                 |                             | (25)               | (5.6)                                                                              | (1.5)          | (1.4)        | (0.4)          | (6.0)           | (1.6)                     | (1.5)                   | (0.4)        | (6.7)                     | (1.6)          | (1.7)        | (0.4)        |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | (44)                                 | 1<br>(25)                   | 1<br>(25)          | 1<br>(25)                                                                          | 1<br>(25)      | 1<br>(25)    | 1<br>(25)      | 1<br>(25)       | (38)                      | (5.6)                   | (1.7)        | (1.4)                     | (0.4)          | (5.8)        | (1.8)        | (1.5)        | (0.5)        | (6.7) | (1.8)        | (1.7) | (0.5)         |               |               |       |       |       |       |       |
|                               | (44)                                 |                             |                    |                                                                                    |                |              |                |                 | 1<br>(25)                 | 1<br>(25)               | 1<br>(25)    | 1<br>(25)                 | 1<br>(25)      | 1<br>(25)    | 1<br>(25)    | (76)         | (7.6)        | (1.8) | (1.9)        | (0.5) | (8.1)         | (2.0)         | (2.0)         | (0.5) | (9.1) | (2.0) | (2.3) | (0.5) |
|                               | (25)                                 |                             |                    |                                                                                    |                |              |                |                 |                           |                         |              |                           |                |              |              | and a second | 1            | 1     | (LO)         | (LO)  | 3557 ()<br>Ei | 3557 ()<br>Ei | 3557 ()<br>Ei | 4     | (3.4) | (2.2) | (0.9) | (0.6) |
|                               | (35)                                 |                             |                    |                                                                                    |                |              |                | (102)           | (4.9)                     | (2.8)                   | (1.2)        | (0.7)                     | (5.2)          | (3.0)        | (1.3)        | (0.8)        | (5.9)        | (3.0) | (1.5)        | (0.8) |               |               |               |       |       |       |       |       |
| 1/4                           | 1-3/4<br>(44)                        |                             |                    | 1,975<br>(8.7)                                                                     | 645<br>(2.8)   | 495<br>(2.2) | 160<br>(0.7)   | 2,120<br>(9.3)  | 690<br>(3.0)              | 530<br>(2.3)            | 175<br>(0.8) | 2,380<br>(10.5)           | 690<br>(3.0)   | 595<br>(2.6) | 175<br>(0.8) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4<br>(44)                        |                             | 1-1/2<br>(38)      | 2,200<br>(9.7)                                                                     | 1,590<br>(7.0) | 550<br>(2.4) | 400<br>(1.8)   | 2,365<br>(10.4) | 1,710<br>(7.5)            | 590<br>(2.6)            | 430<br>(1.9) | 2,650<br>(11.7)           | 1.710<br>(7.5) | 665<br>(2.9) | 430<br>(1.9) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4<br>(44)                        |                             | 3<br>(76)          | 2,200<br>(9.7)                                                                     | 1,635<br>(7.2) | 550<br>(2.4) | 410<br>(1.8)   | 2,365<br>(10.4) | 1,755<br>(7.7)            | 590<br>(2.6)            | 440<br>(1.9) | 2,650<br>(11.7)           | 1,755<br>(7.7) | 665<br>(2.9) | 440<br>(1.9) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1<br>(25)                            | 2-1/2<br>(64)               |                    | 805<br>(3.5)                                                                       | 1,260<br>(5.6) | 200<br>(0.9) | 315<br>(1.4)   | 865<br>(3.8)    | 1,355<br>(6.0)            | 215<br>(1.0)            | 340<br>(1.5) | 970<br>(4.3)              | 1,355<br>(6.0) | 245<br>(1.1) | 340<br>(1.5) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/8<br>(35)                        |                             | 4<br>(102)         | 1,755<br>(7.7)                                                                     | 1,635<br>(7.2) | 440<br>(1.9) | 410<br>(1.8)   | 1,885<br>(8.3)  | 1,755<br>(7.7)            | 470<br>(2.1)            | 440<br>(1.9) | 2,115<br>(9.3)            | 1.755<br>(7.7) | 530<br>(2.3) | 440<br>(1.9) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | 1-3/4<br>(45)                        |                             |                    | 2,290<br>(10.1)                                                                    | 1,635<br>(7.2) | 570<br>(2.5) | 410<br>(1.8)   | 2,460<br>(10.8) | 1,755<br>(7.7)            | 615<br>(2.7)            | 440<br>(1.9) | 2,650<br>(11.7)           | 1755<br>(7.7)  | 665<br>(2.9) | 440<br>(1.9) |              |              |       |              |       |               |               |               |       |       |       |       |       |
|                               | ed Ultimate load<br>le load capaciti |                             |                    |                                                                                    |                |              |                |                 |                           |                         |              |                           |                |              | e avera      |              |              |       |              |       |               |               |               |       |       |       |       |       |

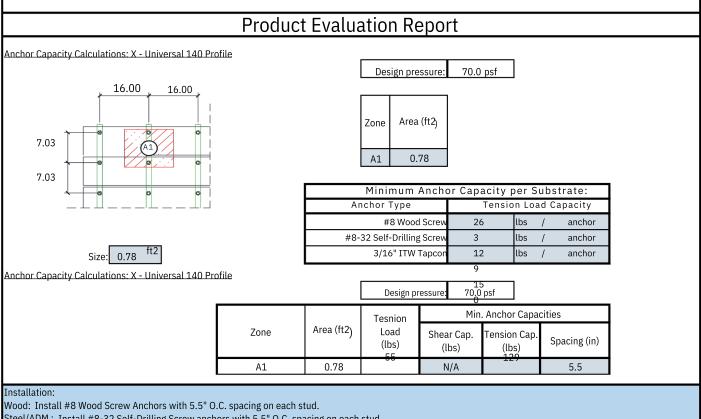
19

Ĩ

## TECHNICAL DATA & CERTIFICATIONS



## Product Evaluation Report


Manufacture: Andersen Windows & Doors

Product : GTO Aluminum - Universal Aluminum Siding System & CLICK Profile Siding System

| Nominal<br>Anchor<br>Diameter<br>d            | Minimum<br>Embed. Depth<br>how<br>in.                                    | Minimum<br>Edge Distance<br>in.<br>(mm)       | Minimum<br>End Distance<br>in.<br>(mm)           | Minimum<br>Spacing<br>in.                                       | Minimum<br>ASTM C90<br>Block Type                                           | Tension<br>Ibs.          | te Load<br>Shear<br>Ibs. | Allowate<br>Tension<br>Ibs. | Shea         |     |
|-----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|--------------|-----|
| in.                                           | (mm)<br>1-1/4                                                            | (mm)                                          | (mm)                                             | (mm)                                                            |                                                                             | (kN)                     | (kN)<br>405              | (kN)<br>145                 | (kn)<br>80   |     |
|                                               | (32)"                                                                    | 1                                             | 2                                                | (38)                                                            | Normal Weight                                                               | 725<br>(3.2)             | (1.8)                    | (0.6)                       | (0.4         |     |
|                                               | 1-1/4<br>(32)                                                            | (25)                                          | (51)                                             | 3<br>(76)                                                       | Normal Weight                                                               | 750<br>(3.3)             | 585<br>(2.6)             | 150<br>(0.7)                | 115          |     |
|                                               | 1 (25)                                                                   |                                               |                                                  | 1-1/2<br>(38)                                                   | Lightweight                                                                 | 300<br>(1.3)             | 460<br>(2.1)             | 55<br>(0.3)                 | 90<br>(0.4   |     |
|                                               | 1 (25)                                                                   | 2 (51)                                        | 2<br>(51)                                        | 3<br>(76)                                                       | Lightweight                                                                 | 340<br>(1.5)             | 460<br>(2.1)             | 65<br>(0.3)                 | 90<br>(0.4   |     |
| 3/16                                          | 1-1/4 (32)                                                               | M160                                          | 0045 3                                           | 1-1/2<br>(38)                                                   | Normal Weight                                                               | 740<br>(3.3)             | 700<br>(3.1)             | 150<br>(0.7)                | 14(<br>(0.6  |     |
|                                               | 1-1/4 (32)                                                               | 2-1/2                                         | 2-1/2                                            | 1-1/8 (29)                                                      | Normal Weight                                                               | 775<br>(3.4)             | 935<br>(4.1)             | 155<br>(0.7)                | 185<br>(0.8  |     |
|                                               | 1-1/4 (32)                                                               | (64)                                          | (64)                                             | 2-1/4<br>(57)                                                   | Normal Weight                                                               | 775<br>(3.4)             | 935<br>(4.1)             | 155<br>(0.7)                | 185<br>(0.8  |     |
|                                               | 1 (25)                                                                   | 3<br>(76)                                     | 3<br>(76)                                        | 1-1/2 (38)                                                      | Lightweight                                                                 | 385<br>(1.8)             | 670<br>(3.0)             | 80<br>(0.4)                 | 135          |     |
|                                               | (25)                                                                     | 3<br>(76)                                     | 3<br>(76)                                        | 3 (76)                                                          | Lightweight                                                                 | 440                      | 670<br>(3.0)             | 90<br>(0.4)                 | 135          |     |
|                                               | 1-1/4 (32)                                                               | 1                                             | 2                                                | 1-1/2 (38)                                                      | Normal Weight                                                               | 775<br>(3.4)             | 475<br>(2.1)             | 155<br>(0.7)                | 95<br>(0.4   |     |
|                                               | 1-1/4 (32)                                                               | (25)                                          | (51)                                             | 3 (76)                                                          | Normal Weight                                                               | 775<br>(3.4)             | 800<br>(3.5)             | 155<br>(0.7)                | 160<br>(0.7  |     |
|                                               | 1 (25)                                                                   |                                               |                                                  | 2 (50)                                                          | Lightweight                                                                 | 435<br>(1.9)             | 530<br>(2.4)             | 90<br>(0.4)                 | 105          |     |
|                                               | 1 (25)                                                                   | 2<br>(51)                                     | 2<br>(51)                                        | 4 (102)                                                         | Lightweight                                                                 | 495                      | 530<br>(2.4)             | 100 (0.4)                   | 105          |     |
| 1/4                                           | 1-1/4 (32)                                                               | - 1997 -                                      | 1005                                             | 2<br>(51)                                                       | Normal Weight                                                               | 760<br>(3.4)             | 740                      | 150<br>(0.6)                | 150          |     |
|                                               | 1-1/4 (32)                                                               | 2-1/2                                         | 2,1/2                                            | 2-1/2                                                           | 1-1/2 (38)                                                                  | Normal Weight            | 800                      | 1,200                       | 160<br>(0.7) | 240 |
|                                               | 1-1/4 (32)                                                               | (64)                                          | (64)                                             | 3 (76)                                                          | Normal Weight                                                               | 880<br>(3.9)             | 1,450<br>(6.4)           | 175                         | 290          |     |
|                                               | 1 (25)                                                                   | 3                                             | 3                                                | 2 (51)                                                          | Lightweight                                                                 | 510<br>(2.3)             | 820<br>(3.6)             | 100                         | 165          |     |
|                                               | 1 (25)                                                                   | (76)                                          | (76)                                             | 4 (102)                                                         | Lightweight                                                                 | 580<br>(2.6)             | 820<br>(3.6)             | 115<br>(0.5)                | 165          |     |
| designated<br>2. Allowable lo<br>safety or ov | ad values are for and<br>ultimate compressive<br>ad capacities listed ar | strength at the time<br>re calculated using a | of installation (f*m ≥<br>n applied safety facto | pe II, light weight<br>2,000 psi). Mortai<br>r of 5.0. Consider | or normal weight concr<br>must be Grade N,S or<br>ation of safety factors o | ete masonry units<br>M., | conforming to ASTI       | M C90 that have read        | ched the mir |     |

## **TECHNICAL DATA & CERTIFICATIONS**





Steel/ADM : Install #8-32 Self-Drilling Screw anchors with 5.5" O.C. spacing on each stud.

Concrete : Install 3/16" DeWalt Ultracon anchors at 3.00" Min. from the corners with 5.5" O.C. spacing.